MathcotさんのHomePageです


テーラー(Taylor)展開・マクローリン(Maclaurin)展開

著者:Mathcot

初版:2007.6.23
Update:2016.02.26


n! 階乗表 n!! 階乗表


一変数テーラー展開(Taylor series Expansion):
x=aの周りの展開
f(x)=f(a)+f'(a)(x-a)/1!+f"(a)(x-a)2/2!+f(3)(a) (x-a)3/3!+...+f(n)(a)(x-a)n/n!+O((x-a)n+1)
ex, x=1 (1/e){1+(x-1)+(x-1)2/2+(x-1)3/3!+(x-1)4/4!+(x-1)5/5!+(x-1)6/6!
+(x-1)7/7!+(x-1)8/8!+(x-1)9/9!+(x-1)10/10!}+O((x-1)11)
ln(x),x=1
 
f(x)=x-1-(x-1)2/2+(x-1)3/3-(x-1)4/4+(x-1)5/5-(x-1)6/6+(x-1)7/7-(x-1)8/8
    +(x-1)9/9-(x-1)10/10+O(x11)
sin(x), x=π/4
f(x)={(√2)/2}{1+(x-(π/4))-(x-(π/4))2/2!-(x-(π/4))3/3!+(x-(π/4))4/4!
   +(x-(π/4))5/5!-(x-(π/4))6/6!-(x-(π/4))7/7!+O((x-(π/4))8)
sin(x), x=π/2
f(x)=1-(x-(π/2))2/2+(x-(π/2))4/24-(x-(π/2))6/720+(x-(π/2))8/40320-(x-(π/2))10/3628800+...
cos(x), x=π/4
f(x)=sqrt(2)/2-(sqrt(2)*(x-π/4))/2-sqrt(2)*(x-(π/4))2/4+sqrt(2)*(x-(π/4))3/12+sqrt(2)*(x-(π/4))4/48
-sqrt(2)*(x-(π/4))5/240-sqrt(2)*(x-(π/4))6/1440+sqrt(2)*(x-(π/4))7/10080+sqrt(2)*(x-(π/4))8/80640
-sqrt(2)*(x-(π/4))9/725760-sqrt(2)*(x-(π/4))10/7257600+...
cos((x), x=π/2
f(x)=-(x-π/2)+(x-π/2)3/6-(x-π/2)5/120+(x-π/2)7/5040-(x-π/2)9/362880+...
tan(x),x=π/4
f(x)=1+2*(x-π/4)+2*(x-π/4)2+8*(x-(π/4))3/3+10*(x-(π/4))4/3+
64*(x-(π/4))5/15+244*(x-(π/4))6/45+2176*(x-(π/4))7/315+554*(x-(π/4))8/63+31744*(x-(π/4))9/2835+
202084*(x-(π/4))10/14175+...
求め方
[wxMaxima] (%i 1) taylor(exp(x),x,1,10);
 (%i 2) taylor(log(x),x,1,10);
 (%i 3) taylor(log(1+x),x,0,10);
  (%i 4) taylor(tan(x),x,%_pi/4,10);
[Maple] series(exp(x),x=a,10);
参考URL
[1]http://next1.msi.sk.shibaura-it.ac.jp/MULTIMEDIA/calc/node22.html
[2]
[3]
[4]

陰関数f(x,y)=0のテーラー展開
f(x,y)=0
y=g(x)
x=aの周りの展開
fx+fy*y'=0, y'=g'(x)=-fx/fy
fxx+2fxy*y'+fxy(x,y)y'2+fy(x,y)y"=0
y"=g"(x)=-(fxx*fy2-2*fx*fxy*fy+fx2*fxy)/fy3 
y'''=g'''(x)=-(fx(x,y)*
fxx(x,y)*fy(x,y)2*fyy(x,y)-2*fx(x,y)2*fxy(x,y)*fy(x,y)*fyy(x,y)+fx(x,y)3*fxy(x,y)*fyy(x,y)+fxxx(x,y)*
fy(x,y)4-3*fxx(x,y)*fxy(x,y)*fy(x,y)3-3*fx(x,y)*fxxy(x,y)*fy(x,y)3+2*fx(x,y)2*fxyy(x,y)*fy(x,y)2+6*fx(x,y)*
fxy(x,y)2*fy(x,y)2+2*fx(x,y)*fxx(x,y)*fxy(x,y)*fy(x,y)2+fx(x,y)2*fxxy(x,y)*fy(x,y)2-fx(x,y)3*fxyy(x,y)*
fy(x,y)-7*fx(x,y)2*fxy(x,y)2*fy(x,y)+2*fx(x,y)3*fxy(x,y)2)/fy(x,y)5  
y=g(x)=g(a)+g'(a)(x-a)/1!+g"(a)(x-a)2/2!+g'''(a) (x-a)3/3!+...+g(n)(a)(x-a)n/n!+O((x-a)n+1)
[演習] f(x,y)=(x2+y2)^2-4xy=0
の (x,y)=(1,1) におけるテーラー展開を求めよ。
[解答] y=g(x)とおくと
(%i1) diff(x^3-(x^2-y^2)/2-x*y^2=0);
(%o1) (y-2*x*y)*del(y)+(-y^2+3*x^2-x)*del(x)=0
(y-2*x*y)*dydx(x,y)+(-y^2+3*x^2-x)=0
(x,y)=(1,1)とおくと
-dydx(1,1)+1=0 , dydx(1,1)=1




二変数テーラー展開(Taylor series Expansion):(x,y)=(a,b)の周りの展開
f(x,y)=f(a,b)+{fx(a,b)(x-a)+fy(a,b)}/1!
 +[fxx(a,b)(x-a)2+{fxy(a,b)+fyx(a,b)}(x-a)(x-b)+fyy(a,b)(y-b)2]/2!
 +[fxxx(a,b) (x-a)3+{fxxy(a,b)+fxyx(a,b)+fyxx(a,b)}x2y+{fxyy(a,b)+fyxy(a,b)+fyyx(a,b)}xy2
 +fyyy(a,b)y3]/3!+...+{(x-a)Dx+(y-b)Dy}nf(a,b)/n!+...
(x-a)2Dx2 f(a,b)=(x-a)2 fxx(a,b), (x-a)(y-b)DxDy(a,b)=(x-a)(y-b)fxy(a,b), etc

f(x,y) = 3x2+4xy-5y2の (1,-2)のまわりでの
2次のテイラー展開を求めよ。
f(x,y)=f(1,-2)+(x-1)fx(1,-2)+(y+2)fy(1,-2)
 +(x-1)2(1/2)fxx(1,-2)+(y+2)2(1/2)fyy(1,-2)+(x-1)(y+2)fxy(1,-2)
 +R3
=-25-2(x-1)+24(y+2)+3(x-1)2-5(y+2)2+4(x-1)(y+2),
R3=0

[Maple10]     
> f := 3 x2  - 5 y2  + 4 x y; eval(f, [x = 1, y = -2]);
 f1 := series(f, x = 1, 3);
 f2 := series(f, y = -2, 3);
                      f:=3 x2  + 4 x y - 5 y2
                              -25
      f1:= 3 - 5 y2  + 4 y + (4 y + 6) (x - 1) + 3 (x - 1)2
      f2:= 3 x2  - 8 x - 20 + (20 + 4 x) (y + 2) - 5 (y + 2)2

> fx := ∂f/∂x; eval(fx, [x = 1, y = -2]); fxx :=∂fx/∂x;
                       fx:= 6 x + 4 y
                               -2
                               fxx: = 6

> fy := ∂f/∂y; eval(fy, [x = 1, y = -2]); fyy :=∂fy/∂y;
                           fy:=4 x - 10 y
                               24
                              fyy:= -10

> fxy := ∂fx/∂y; fyx := ∂fy/∂x; eval(fxy, [x = 1, y = -2]);
                               fxy:= 4
                               fyx= 4
                               4

> simplify(expand(-25 - 2 (x-1) + 24 (y+2) + 3 (x - 1)2  - 5 (y + 2)2 
 + 4 (x - 1) (y + 2)));
                      s:= 3 x2  - 5 y2  + 4 x y

> convert(s,  'string');
                      "3 x2-5 y2+4*x*y"
f(x,y) = exy の(0,0)のまわりでの2次のテイラー展開を求め、剰余項R3の具体的な形を求めよ。
f(x,y)=f(0,0)+xfx(0,0)+yfy(0,0)+(1/2)x2fxx(0,0)+(1/2)y2fyy(0,0)
 +xyfxy(0,0)+R3
 =1+xy+R3
f(x,y)=1+xy+R3, R3=exy-1-xy

[Maple10]
2TE-44.jpg
                            exp(x y)
                               1
                           y exp(x y)
                               0
                           x exp(x y)
                               0
                    exp(x y) + y x exp(x y)
                               1
                    exp(x y) + y x exp(x y)
                               1
                          y2  exp(x y)
                               0
                          x2  exp(x y)
                               0
> 2TE-45.jpg
2TE-46.jpg
参考URL
[1]http://markun.cs.shinshu-u.ac.jp/learn/biseki/no_9/cont09_3.html
[2]
[3]



マクローリン展開:テイラー展開でx=0の周りの展開
x=aの周りの展開 f(x)=f(0)+f'(0) x/1!+f"(0) x2/2!+f(3)(0) x3/3!+...+f(n)(0)(xn)/n!+O(xn+1)  (収束範囲)
ex, x=0 1+x+ x2/2!+x3/3!+x4/4!+x5/5!+x6/6!+x7/7!+x8/8!+x9/9!+x10/10!+O(x11)  (-1<x<1)
ln(1+x),x=0 f(x)=x- x2/2+x3/3-x4/4+x5/5-x6/6+x7/7-x8/8+x9/9-x10/10+O(x11)  (-1<x<1)
1/(1+x), x=0 f(x)=1-x+ x2-x3+x4-x5+x6-x7+x8-x9+x10+O(x11)     (-1<x<1)
1/(1-x), x=0 f(x)=1+x+ x2+x3+x4+x5+x6+x7+x8+x9+x10+O(x11)   (-1<x<1)
=Σ[n=0, ∞] xn  (-1<x<1)
1/(1+x2), x=0 f(x)=1- x2+x4-x6+x8-x10+...
=Σ[n=0, ∞] (-1)n x2n  (-1<x<1)
1/(1-x2), x=0 f(x)=1+ x2+x4+x6+x8+x10+...
=Σ[n=0, ∞] x2n   (-1<x<1)
1/√(1+x), x=0 f(x)=1-x/2+3* x2/8-5*x3/16+35*x4/128-(63*x5)/256+(231*x6)/1024
-(429*x7)/2048+(6435*x8)/32768-(12155*x9)/65536+(46189*x10)/262144+...
=Σ[n=0, ∞] (-1)n ((2n-1)!!/(2n)!!) xn  (-1<x<1)
1/√(1-x), x=0 f(x)=1+x/2+3* x2/8+5*x3/16+35*x4/128+(63*x5)/256+(231*x6)/1024
+(429*x7)/2048+(6435*x8)/32768+(12155*x9)/65536+(46189*x10)/262144+...
=Σ[n=0, ∞] ( (2n-1)!!/(2n)!!) xn  (-1<x<1)
√(1+x), x=0 f(x)=1+x/2- x2/8+x3/16-5*x4/128+(7*x5)/256-(21*x^6)/1024+(33*x^7)/2048
-(429*x^8)/32768+(715*x9)/65536-(2431*x10)/262144+...
=Σ[n=0, ∞] (-1)n (2(2n-1)!!/((n+1)(2n)!!) xn+1  (-1<x<1)
√(1-x), x=0 f(x)=1-x/2- x2/8-x3/16-5*x4/128-(7*x5)/256-(21*x6)/1024-(33*x^7)/2048
-(429*x8)/32768-(715*x9)/65536-(2431*x10)/262144+...
√(1+x2), x=0 f(x)=1+ x2/2-x4/8+x^6/16-(5*x^8)/128+(7*x^10)/256+...
√(1-x2), x=0 f(x)=1- x2/2-x4/8-x^6/16-(5*x^8)/128-(7*x^10)/256+...
1/√(1+x2), x=0 f(x)=1- x2/2+3*x4/8-(5*x6)/16+(35*x8)/128-(63*x^10)/256+...
=Σ[n=0, ∞] (-1)n (2n-1)!!/(2n)!! x2n  (-1<x<1)
1/√(1-x2), x=0 f(x)=1+ x2/2+3*x4/8+(5*x6)/16+(35*x8)/128+(63*x10)/256+...
=Σ[n=0, ∞]  (2n-1)!!/(2n)!! x2n  (-1<x<1)
sin(x), x=0
f(x)=x-x3/3!+x5/5!-x7/7!+x9/9!+...+(-1)n x2n+1 /(2n+1)!+...
cos(x), x=0
f(x)=1- x2/2!+x4/4!-x^6/6!+x^8/8!-x^10/10!+...+(-1)n x2n /(2n)!+...
tan(x), x=0
f(x)=x+2x3/3!+16x5/5!+272x7/7!+(7936x9/9!)+(353792x11/11!)+...
=x+x3/3+2x5/15+17x7/315+(62x9/2835)+(1382x11/155925)+...  (-1<x<1)
sin-1 (x), x=0
f(x)=x+x3/6+(3*x5)/40+(5*x7)/112+(35*x9)/1152+...
cos-1 (x), x=0
f(x)=π/2-x-x3/6-(3*x5)/40-(5*x7)/112-(35*x9)/1152+...
tan-1 (x), x=0
f(x)=x-x3/3+x5/5-x7/7+x9/9+...
=Σ[n=0, ∞] (-1)n x2n+1 /(2n+1)   (-1<x<1)
sinh(x)=(ex-e-x)/2
f(x)=x+x3/3!+x5/5!+x7/7!+x9/9!+ ...    (-1<x<1)
=Σ[n=0, ∞] x2n+1/(2n+1)!
cosh(x)=(ex+e-x)/2
f(x)=1+x2/2!+x4/4!+x6/6!+x8/8!+ ...    (-1<x<1)
=Σ[n=0, ∞] x2n /(2n)!
tanh(x)=(ex-e-x)/(ex+e-x)
f(x)=x-2x3/3!+16x5/5!-272x7/7!+7936x9/9!-353792x11/11!+...
=x-x3/3+2x5/15-17x7/315+62x9/2835-1382x11/155925+...  (-1<x<1)
sinh-1 (x)
=in(x+√(1+x2))
f(x)=x-(1/6)x3+(3/40)x5-(5/112)x7+(35/1152)x9- ...
=Σ[n=0, ∞] {(-1)n (2n-1)!!/((2n+1)(2n)!!)} x2n+1  (-1<x<1)
sin(x)/x, x=0
f(x)=1- x2/6+x4/120-x^6/5040+x^8/362880-x^10/39916800+...
sin(sin(x)), x=0
f(x)=x-x3/3+x5/10-(8*x7)/315+(13*x9)/2520-(47*x11)/49896
  +(15481*x13)/97297200-(15788*x15)/638512875+...
sin(cos(x)), x=0
f(x)=sin(1)-(cos(1)*x2)/2-(3*sin(1)-cos(1))*x4/24+((15*sin(1)+14*cos(1))*x6)/720
+((42*sin(1)-209*cos(1))*x8)/40320+...
cos(cos(x)), x=0
f(x)=cos(1)+(sin(1)*x2)/2-(3*cos(1)+sin(1))*x4/24+((15*cos(1)-14*sin(1))*x6)/720
+((42*cos(1)+209*sin(1))*x8)/40320+...
cos(sin(x)), x=0
f(x)=1- x2/2+5*x4/24-(37*x6)/720+(457*x8)/40320-(389*x10)/172800
+(599*x12)/1520640-(5497741*x14)/87178291200+(39584029*x16)/4184557977600+...
参考URL
[1]Colin Maclaurin
[2]http://mathworld.wolfram.com/MaclaurinSeries.html
[3]http://www.iris.dti.ne.jp/~k-ohkura/physics/taylor.html
[4]http://www.ee.t-kougei.ac.jp/tuushin/lecture/math1/htdocs/function/derivative/maclaurin.html#Maclaurin
[5]


ローラン展開(Laurent series expansion):負のべき乗展開を含むz=z1=a+b i の周りの展開
複素関数f(z)をz=z1=a+i b の周りに展開する
[wxMaxima] taylor(f(z),z,a+b*%_i,5);
[Maple] series(f(z),z,a+b*I,5);type(%,'laurent');
1/(z^2+1)^2, z=i
taylor(1/(z^2+1)^2,z,%_i,2);
f(z)=-1/(4*(z-i)^2)-i/(4*(z-i))+3/16+(%i*(z-i))/8-(5*(z-i)^2)/64+...
z/(z^2+1)^2, z=-i
taylor(z/(z^2+1)^2,z,-%_i,2);
f(z)=i/(4*(z+i)^2)+i/16+(z+i)/16-(3*i*(z+i)^2)/64+...
 
 
指数関数
wxMaxima> taylor(exp(x),x,0,10);
Maple10> series(exp(x),x,10);
exp(x)=1+x+x^2/2+x^3/6+x^4/24+x^5/120+x^6/720+x^7/5040+x^8/40320+x^9/362880+x^10/3628800+0(x^11)
 
wxMaxima> taylor(exp(-x),x,0,10);
Maple10> series(exp(-x),x,10);
exp(-x)=1-x+x^2/2-x^3/6+x^4/24-x^5/120+x^6/720-x^7/5040+x^8/40320-x^9/362880+x^10/3628800+0(x^11)


 
対数関数

三角関数
3_01.PNG
wxMaxima>
f:tan(x);
tan(x)
diff(f,x,1);limit(%,x,0);diff(f,x,2);limit(%,x,0);diff(f,x,3);
limit(%,x,0);diff(f,x,4);limit(%,x,0);diff(f,x,5);limit(%,x,0);
diff(f,x,6);limit(%,x,0);diff(f,x,7);limit(%,x,0);diff(f,x,8);limit(%,x,0);

sec(x)^2
1
2*sec(x)^2*tan(x)
0
4*sec(x)^2*tan(x)^2+2*sec(x)^4
2
8*sec(x)^2*tan(x)^3+16*sec(x)^4*tan(x)
0
16*sec(x)^2*tan(x)^4+88*sec(x)^4*tan(x)^2+16*sec(x)^6
16
32*sec(x)^2*tan(x)^5+416*sec(x)^4*tan(x)^3+272*sec(x)^6*tan(x)
0
64*sec(x)^2*tan(x)^6+1824*sec(x)^4*tan(x)^4+2880*sec(x)^6*tan(x)^2+272*sec(x)^8
272
128*sec(x)^2*tan(x)^7+7680*sec(x)^4*tan(x)^5+24576*sec(x)^6*tan(x)^3+7936*sec(x)^8*tan(x)
0

taylor(tan(x),x,0,10);
x+(x^3)/3 +2(x^5)/15 +17(x^7)/315 +62(x^9)/2835

<Maple>
f(x)=sin(x+a), a≠0
series(sin(x+a),x,6)
sin(a)+x*cos(a)-(x^2)(1/2)sin(a)-(x^3)(1/6)cos(a)+(x^4)(1/24)sin(a)+(x^5)(1/120)cos(a)+O(x^6)

[演習] sin(z)/{z3(z+1)}のMaclaurin展開 を求めよ。

[解答] <wxMaxima>
(%i1) taylor(sin(z)/(1+z),z,0,10)/z^3;
(%o1) 1/z^2-1/z+5/6-(5*z)/6+(101*z^2)/120-(101*z^3)/120+(4241*z^4)/5040-(4241*z^5)/5040
+(305353*z^6)/362880-(305353*z^7)/362880+...

[演習] sin(z)/{z3(z+1)}のz=0における留数を求めよ。
 
[解答] <wxMaxima>
(%i2) residue(sin(z)/(z^3*(1+z)),z,0);
(%o2) -1

双曲線関数
sinh(x) f(x)=x+x^3/3!+x^5/5!+x^7/7!+x^9/9!0+...
cosh(x) <Maple>series(cosh(x),x,10)
f(x)=1+(x^2)/2! +(x^4)/4!+(x^6)/6! +(x^8)/8! +(x^10)/10!+O(x^10)
    =1+x^2/2+x^4/24+x^6/720+x^8/40320+x^10/3628800+...
tanh(x)
f(x)=f(x)=x-x^3/3+(2*x^5)/15-(17*x^7)/315+(62*x^9)/2835+...


分数関数
wxMaxima>
(%i1)taylor(z/(4-z^2),z,0,10);

(%o1) 4_01.PNG

【微係数を求める方法】
関数f(x)の定義


f'(x)を求める。


f'(0)を求める。


f"(x)を求める。

4_01_11o.png
f"(0)を求める。
4_01_12i.PNG
4_01_12o.png
f'"(x)を求める。
4_01_13i.PNG

f'"(0)を求める。
4_01_14i.PNG
4_01_14o.png
係数:f'"(0)/3!=1/16
 
これを繰り返してテイラー展開の係数を求める。
 



 
Maple10>
4_01_15.PNG
 Laurent展開にもなっている。 
 




(c)Copyrights 2007-2008 Mathcot. All rights reserved.
更新履歴:
Update:2007.06.23
Update:2007.12.24
Update:2008.05.25
Update:2008.11.24
Update:2016.02.26



inserted
      by FC2 system inserted by FC2 system